A nearest neighbor bootstrap for resampling hydrologic time series

نویسندگان

  • Upmanu Lall
  • Ashish Sharma
چکیده

A nonparametric method for resampling scalar or vector-valued time series is introduced. Multivariate nearest neighbor probability density estimation provides the basis for the resampling scheme developed. The motivation for this work comes from a desire to preserve the dependence structure of the time series while bootstrapping (resampling it with replacement). The method is data driven and is preferred where the investigator is uncomfortable with prior assumptions as to the form (e.g., linear or nonlinear) of dependence and the form of the probability density function (e.g., Gaussian). Such prior assumptions are often made in an ad hoc manner for analyzing hydrologic data. Connections of the nearest neighbor bootstrap to Markov processes as well as its utility in a general Monte Carlo setting are discussed. Applications to resampling monthly streamflow and some synthetic data are presented. The method is shown to be effective with time series generated by linear and nonlinear autoregressive models. The utility of the method for resampling monthly streamflow sequences with asymmetric and bimodal marginal probability densities is also demonstrated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ideal bootstrap estimation of expected prediction error for k-nearest neighbor classifiers: Applications for classification and error assessment

Euclidean distance -nearest neighbor ( -NN) classifiers are simple nonparametric classification rules. 5 5 Bootstrap methods, widely used for estimating the expected prediction error of classification rules, are motivated by the objective of calculating the ideal bootstrap estimate of expected prediction error. In practice, bootstrap methods use Monte Carlo resampling to estimate the ideal boot...

متن کامل

Semiparametric Bootstrap Prediction Intervals in time Series

One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...

متن کامل

Time Series Analysis for Irregularly Sampled Data

Many spectral estimation methods for irregularly sampled data tend to be heavily biased at higher frequencies or fail to produce a spectrum that is positive for all frequencies. A time series spectral estimator is introduced that applies the principles of a new automatic equidistant missing data algorithm to unevenly spaced data. This time series estimator approximates the irregular data by a n...

متن کامل

BIOINFORMATICS Prediction Error Estimation: A Comparison of Resampling Methods

Motivation: In genomic studies, thousands of features are collected on relatively few samples. One of the goals of these studies is to build classifiers to predict the outcome of future observations. There are three inherent steps to this process: feature selection, model selection, and prediction assessment. With a focus on prediction assessment, we compare several methods for estimating the ’...

متن کامل

A Novel Fuzzy Based Method for Heart Rate Variability Prediction

Abstract In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main components of this method. This learning process in this method is similar to conventional gradient descent learning process, except that the input patterns and parameters are stored in mem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004